Inexact Newton Dogleg Methods

Homer Walker
Mathematical Sciences Department
Worcester Polytechnic Institute
August 8, 2003

Joint work with Roger Pawlowski (SNL), J. N. Shadid (SNL), J. P. Simonis (WPI).

Nonlinear problem: F(x) = 0, $F: \mathbb{R}^n \to \mathbb{R}^n$.

Start with classical . . .

Newton's Method:

Given an initial x.

Iterate:

Solve F'(x)s = -F(x). Update $x \leftarrow x + s$.

Globalizations.

Idea: Repeat as necessary . . .

- *Test* a step for acceptable progress.
- If unacceptable, *modify* it and test again.

Major approaches:

- Backtracking (linesearch, damping).
- Trust region.

Trust region globalization.

• $s = \arg \min_{\|w\| \le \delta} \|F(u) + F'(u) w\|.$

• Can't be computed exactly.

The dogleg step.

• $\Gamma^{\mathrm{DL}} \colon 0 \to s^{\mathrm{CP}} \to s^N$.

• $s = \underset{\|w\| \leq \delta, w \in \Gamma^{\mathrm{DL}}}{\operatorname{arg \, min}} \|F(u) + F'(u) w\|.$

Work toward inexact Newton and Newton-Krylov adaptations.

Straightforward:

•
$$||F(u) + F'(u) s^{IN}|| \le \eta ||F(u)||$$

• $\Gamma^{\mathrm{DL}} : 0 \to s^{\mathrm{CP}} \to s^{IN}$.

Inexact Newton Dogleg Method:

Given $\eta_{\max} \in [0,1)$, $\delta_{\min} > 0$, $t \in (0,1)$, $0 < \theta_{\min} < \theta_{\max} < 1$, and initial u and $\delta \geq \delta_{\min}$.

Iterate:

Choose $\eta \in [0, \eta_{ ext{max}}]$ and s^{IN} such that

$$||F(u) + F'(u) s^{IN}|| \le \eta ||F(u)||.$$

Determine $s \in \Gamma^{DL}$.

While $ared < t \cdot pred$ do:

Choose $\theta \in [\theta_{\min}, \theta_{\max}]$.

Update $\delta \leftarrow \max\{\theta \delta, \delta_{\min}\}.$

Redetermine $s \in \Gamma^{DL}$.

Update $u \leftarrow u + s$ and update δ .

- $ared \equiv ||F(u)|| ||F(u+s)||$, $pred \equiv ||F(u)|| ||F(u) + F'(u)s||$.
- Choose θ , update δ a la Dennis-Schnabel.
- Determine $s \in \Gamma^{\mathrm{DL}}$ so that $||s|| \geq \min\{||s^{IN}||, \delta_{\min}\}.$

Recall: u is a stationary point of $||F|| \iff ||F(u)|| \le ||F(u) + F'(u)s|| \ \forall s$.

Theorem: Assume F is continuously differentiable. If u_* is a limit point of $\{u_k\}$, then u_* is a stationary point of $\|F\|$. If additionally $F'(u_*)$ is nonsingular, then $F(u_*) = 0$ and $u_k \to u_*$; furthermore, $s_k = s_k^{IN}$ is acceptable for all sufficiently large k.

Proof: Since $||F(u_k) + F'(u_k) s_k^{IN}|| \le \eta_{\max} ||F(u_k)||$ and $||s_k|| \ge \min\{||s_k^{IN}||, \delta_{\min}\}$, one can show: If u_* is either a non-stationary point or such that $F'(u_*)$ is nonsingular, then there is an $\bar{\eta} < 1$ such that

$$||F(u_k) + F'(u_k) s_k|| \le \bar{\eta} ||F(u_k)||$$

for u_k near u_* . The theorem follows from Eisenstat-W (1994), Cor. 3.6.

Possible big problem:

Evaluating s^{CP} requires F'^T -products.

- > Analytic evaluation may be expensive, infeasible.
- ▶ Finite-difference approximation won't work.
- ▶ Automatic differentiation?
- ▶ Brown–Saad (1990): dogleg-within-the-Krylov-subspace using (unrestarted) GMRES.
- ightharpoonup Not a problem when $F'=F'^T$.

Minor consideration: For <u>any</u> $\eta \in [0, \eta_{\max})$, $\|F(u) + F'(u)s\|$ may not decrease monotonically along Γ^{DL} .

More serious consideration: Unless $\eta \in [0, \eta_{\max})$ is small (how small?), we may have $\langle s^{IN}, s^{\text{CP}} \rangle < \|s^{\text{CP}}\|^2$ or $\|s^{IN}\| < \|s^{\text{CP}}\|$.

How to choose $s \in \Gamma^{\mathrm{DL}}$?

The Standard Strategy.

$$\begin{split} &\text{If } \|s^{IN}\| \leq \delta, \\ &s = s^{IN} \\ &\text{Else if } \|s^{\text{CP}}\| \geq \delta, \\ &s = (\delta/\|s^{\text{CP}}\|)s^{\text{CP}} \\ &\text{Else} \\ &s = (1-\gamma)s^{\text{CP}} + \gamma s^{IN} \\ &\text{for } \gamma \in (0,1) \text{ such that } \|s\| = \delta \end{split}$$

- $s \in \Gamma^{DL}$ is uniquely determined.
- s^{IN} is always computed; s^{CP} may not be.
- ullet If η isn't small, we may have $s=s^{IN}$ when $s=\lambda s^{\mathrm{CP}}$ would be preferred.

An Alternative Strategy.

$$\begin{split} &\text{If } \|s^{\text{CP}}\| \geq \delta, \\ &s = (\delta/\|s^{\text{CP}}\|)s^{\text{CP}} \\ &\text{Else if } \|F(u) + F'(u)\,s^{\text{CP}}\| \leq \eta \|F(u)\|, \\ &s = s^{\text{CP}} \\ &\text{Else if } \|s^{IN}\| \leq \delta, \\ &s = s^{IN} \\ &\text{Else} \\ &s = (1-\gamma)s^{\text{CP}} + \gamma s^{IN} \\ &\text{for } \gamma \in (0,1) \text{ such that } \|s\| = \delta \end{split}$$

- $s \in \Gamma^{DL}$ is uniquely determined.
- s^{CP} is always computed; s^{IN} may not be.
- s is appropriately biased toward s^{CP} .

Further refinements.

• If needed, s^{IN} can be computed as $s^{IN}=s^{\mathrm{CP}}+z$, where $\|r^{\mathrm{CP}}+F'(u)z\|\leq \eta\|F(u)\|$ and $r^{\mathrm{CP}}\equiv F(u)+F'(u)\,s^{\mathrm{CP}}$.

• Having both s^{CP} and s^{IN} , we can choose $s=(1-\gamma)s^{\text{CP}}+\gamma s^{IN}$ so that $\|s\|\leq \delta$ and $\|F(u)+F'(u)s\|$ is minimal (easy).

Numerical experiments. Extremely preliminary!!

- ▶ IBM Linux cluster, 4 nodes (8 CPUs).
- ▶ MPSalsa + NOX.
- No row-sum scaling (yet).
- \triangleright Alternative strategy computes $s^{IN}=s^{\rm CP}+z$, does not minimize $\|F(u)+F'(u)\,s\|.$

2D Thermal Convection Problem. Run times in seconds.

	Backtracking	Dogleg	
Ra	(Quad.)	Std.	Alt.
10 ³	57	56	56
10 ⁴	111	94	93
10 ⁵	146	147	98
10 ⁶	409	1003	265
Geo. Means	139	167	108

Adaptive (Choice 1) Forcing Terms

	Dogleg		
Ra	Std.	Alt.	
10 ³	83	82	
10 ⁴	121	126	
10 ⁵	293	262	
10 ⁶	1266	1171	
Geo. Means	247	237	

Constant (10^{-4}) Forcing Terms

2D Backward Facing Step Problem. Run times in seconds.

	Dogleg		
Re	Std.	Alt.	
100	20	23	
200	48	36	
300	163	30	
400	210	35	
500	F	63	
600	F	137	
700	F	F	
750	F	F	
800	F	F	
Geo. Means*	95	28	

Adaptive	(Choice	1)	Forcing	Terms
----------	---------	----	---------	-------

	Dogleg		
Re	Std.	Alt.	
100	22	22	
200	42	42	
300	94	100	
400	F	F	
500	63	63	
600	109	71	
700	125	133	
750	136	142	
800	268	146	
Geo. Means**	247	237	

Constant (10^{-4}) Forcing Terms

 $^{^*100 \}le Re \le 400$

 $^{**}Re \neq 400$

Conclusions.

- None yet! Except ...
- These dogleg methods can solve nontrivial problems.
- Methods, strategies, and refinements bear further study.